PRESENTATION OF THE E-KNOT PROJECT
• The e-Knot project aims at building strong links between universities, research institutes and industry, and leveraging on past activities already undertaken in this field. It provides direct benefits to industry by implementing measures to strengthen GNSS education and fostering the co-operation between education, research and business in favour of innovation. For more information, please consult: www.eknotproject.eu

PRESENTATION OF THE E-KNOT TRAINING PROGRAM
• The e-Knot professional training program is an ambitious program aimed at providing GNSS training to employees of industry, research centres and institutions. It is based on the provision of twelve 3-day free-of-charge tutorials over 3 years (2 in 2015, 5 in 2016 and 5 in 2017).
• This program is supported by the European Commission and the European GNSS Agency (GSA) through the e-Knot project under the grant agreement 641529.

INSTRUCTORS
• The instructors of the e-Knot professional training program are GNSS experts from the Ecole Nationale de l’Aviation Civile (France), Politecnico di Torino (Italy), Universitat Politècnica de Catalunya (Spain), Astri Polska (Poland).

TRAINING PROGRAM SCHEDULE FOR 2016 (SEE FOLLOWING PAGES FOR DETAILS):

<table>
<thead>
<tr>
<th>COURSE TITLE</th>
<th>DATE</th>
<th>LOCATION</th>
<th>REGISTRATION DEADLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of GNSS</td>
<td>30 March -01 April 2016</td>
<td>UPC, Spain, Barcelona</td>
<td>01 March 2016</td>
</tr>
<tr>
<td>GNSS Positioning: Theory and Practice</td>
<td>07-09 June 2016</td>
<td>GSA, Czech Republic, Prague</td>
<td>06 May 2016</td>
</tr>
<tr>
<td>Vulnerabilities of GNSS</td>
<td>18-20 October 2016</td>
<td>Polito, Italy, Torino</td>
<td>16 May 2016</td>
</tr>
</tbody>
</table>

REGISTRATION GUIDELINES
The registration is free-of-charge (coffee breaks and lunches are included). Travel costs, hotel and living expenses have to be covered by the participant.
The tutorials are open to any employee coming from a company, an international/national institution or a research centre.
The registration deadline is 1 month before the start of the tutorial. Confirmation of registration will be required 3 weeks before the start of the tutorial. If we don’t receive a confirmation within the following week, we consider that the participant has cancelled his/her registration.
The selection process will follow a first-come-first-served basis. Priority will be given to employees coming from an H2020 company/institution/research centre (see box on the left for the list of H2020 countries).

You can register by submitting your application via the following online form:

CONTACT INFORMATION
Sara Bouterfas
sara.bouterfas@enac.fr
+33 5 62 17 42 76
OBJECTIVES:
This course provides a beginners’ guide to GNSS technology. It introduces current systems and presents future systems that are becoming available. The course discusses the concepts behind global positioning, how the signal is used to determine location by a receiver and end-user applications. Later in the course the sources of GNSS errors are discussed, as well as the various augmentations systems available for service enhancement. A concluding talk is presented on the future of GNSS and the European Galileo system.

TOPICS COVERED:
• Fundamentals of Satellite Navigation
 - What is navigation?
 - Position fixing
- GNSS Systems
 - GPS, GLONASS, Galileo, BeiDou, regional navigation systems
 - System architecture: space, control and user segments
- GNSS signals
 - Position and time determination
 - GNSS signal structure
- Reference Systems: Coordinates and Times
 - Coordinate systems, frames and transformations
 - Fundamentals of Time References
- GNSS Receivers and Architecture
 - Data acquisition & data formats: Receiver Front-end
 - GNSS receiver data processing from measurements to coordinates
- GNSS software receiver Demonstrator
 - Analysis of GNSS base-band processing chain using a GNSS software Receiver
- Range Error Sources
 - Satellite clock and ephemeris prediction errors
 - Ionosphere and troposphere propagation errors
 - Tracking errors
 - Multipath
- Differential GNSS / Augmentation Systems
 - Spatial and temporal correlation of GNSS errors
 - EGNOS / WAAS
- Precise Point Positioning
 - Precise Satellite Orbits and Clocks
 - Carrier phase ambiguities: Floating vs Fixing
 - Accelerating the Filter Convergence: Fast-PPP

INSTRUCTORS:
Prof. Fabio Dovis is an associate professor at Politecnico di Torino, working at the Department of Electronics and Telecommunications, where he contributed to the creation of the Navigation, Signal Analysis and Simulation (NavSAS) group. His research interests are focused on Global Navigation Satellite Systems and on positioning techniques. His scientific work addresses the design of architectures for GNSS receivers and of advanced algorithms for interference detection and multipath mitigation, considering both current and modernized GNSS signals. He has a relevant experience in international projects in GNSS as well as cooperation with industries and research centres.

Dr. Jaume Sanz Subirana is teaching at the Technical University of Catalonia (UPC), Barcelona, Spain, since 1983, receiving accreditation for Full Professor in 2010. Together with Dr. J.M. Juan, he created the Research Group of Astronomy and Geomatics (gAGE/UPC) in 1987. Its current research interests is in the field of GNSS data processing algorithms, ionospheric sounding, SBAS and Qbas, and High Accuracy Navigation. This last topic is one of the main research areas of gAGE/UPC, developing new algorithms which lead to the Wide Area RTK (WARTK) and Fast-Precise Point Positioning (F-PPP) techniques. He has been Principal Investigator in several international R+D projects. He is co-authoring more than 70 papers in peer-reviewed journals and about 200 works in meeting proceedings. He is co-authoring 5 patents on GNSS and 4 books on GNSS.

Dr. Adrià Rovira-Garcia received his Aerospace Engineering degree in 2010 and the Ph.D. in Aerospace Science and Technology in 2016 from the UPC, Spain. He is currently a post-doctoral researcher at UPC focused in enhanced algorithms for the Fast-Precise Point Positioning (F-PPP) technique. He co-authors 4 papers in peer-reviewed journals, 2 book chapters and 13 works in meeting proceedings, with 1 best presentation award from the US Institute of Navigation.
Tutorial 2: GNSS Receiver Signal Processing

OBJECTIVES:
This course provides an overview of GNSS receiver signal processing. The course starts by looking at the specific case of GPS L1 C/A and its basic processing in a GPS receiver (acquisition, tracking and demodulation). It then investigates the effect of multipath and interference on such processing. The second part of the course introduces the innovations that are present in the new GNSS signals (Galileo, modernized GPS, etc.) and their implications on the structure and performance of GNSS receiver signal processing.

TOPICS COVERED:
- **GNSS Signal and Desired Properties**
 - Structure of the transmitted signal
 - Overview of GNSS propagation channel
 - Structure of the received signal
- **Typical GNSS Receiver Architecture**
 - Receiver antenna
 - Receiver front-end
 - Receiver signal processing overview
 - Structure of the signal entering the digital signal processing block
- **GPS L1 C/A Acquisition in Presence of Thermal Noise**
 - The correlation operation
 - Acquisition
- **GPS L1 C/A Tracking and Data Demodulation in Presence of Thermal Noise**
 - Carrier and carrier phase tracking
 - Code delay tracking
 - Data demodulation
- **Multipath Effects on Code and Carrier Tracking**
 - Typical multipath model
 - Carrier and code tracking multipath envelopes and general performance
 - Typical mitigation
- **Interference Effects on Code and Carrier Tracking**
 - Main interference threats and models
- **Review of New GNSS Signals and Their Innovations**
 - Main innovations: PRN codes, data/pilot architecture, BOC and BOC-derived modulation, secondary codes, navigation message coding
 - Presentation of the transmitted civil GNSS signals
 - Correlation functions of the main GPS and Galileo main correlation signals
- **Acquisition of Future GNSS Signals in Presence of Thermal Noise**
 - Review of typical acquisition techniques for data/pilot signals
 - Impact of new signal structures on acquisition performance
 - Introduction to secondary code acquisition strategies
- **Tracking of Future GNSS Signals in Presence of Thermal Noise**
 - Phase tracking of Future GNSS Signals
 - Code tracking of Future GNSS Signals
- **Receiver Testing**
 - Receiver testing introduction
 - Spirent testing environment
 - Examples of receiver testing campaigns

INSTRUCTORS:
- **Dr. Olivier Julien** is the head of the Signal Processing and Navigation (SIGNAV) research group of the TELECOM lab of ENAC (Ecole Nationale de l’Aviation Civile), in Toulouse, France. He received his PhD in 2005 from the department of Geomatics Engineering of the University of Calgary, Canada. His research activity focuses on positioning and navigation for a wide range of applications including civil aviation, pedestrian and vehicular applications. He has a significant experience regarding advanced GNSS receiver signal processing and receiver design with a special interest in the design and use of future GNSS signals. He has been involved in numerous projects with industry and national/international institutions.

- **Karol Brzostowski** is a certified GNSS Specialist and project manager at Astri Polska since 2012. He graduated from Faculty of Geodesy and Land Management in 2008 with an MSc engineering degree in satellite geodesy and navigation. Before joining Astri Polska, he worked for 3 years in Space Research Centre Polish Academy of Sciences in Warsaw as a main engineer and GNSS specialist. He has an extensive knowledge about the GNSS systems (architecture, performances, advantages, disadvantages, market), Strong background in estimation theory and a wide knowledge and experience in GNSS tests, measurements and data elaboration. He also won second prize in regional European Satellite Navigation Competition in 2012.

- **Prof. Fabio Dovis** is associate professor at Politecnico di Torino, working at the Department of Electronics and Telecommunications, where he contributed to the creation of the Navigation, Signal Analysis and Simulation (NavSAS) group. His research interests are focused on Global Navigation Satellite Systems and on positioning techniques. His scientific work addresses the design of architectures for GNSS receivers and of advanced algorithms for interference detection and multipath mitigation, considering for both current and modernized GNSS signals. He has a relevant experience in international projects in GNSS as well as cooperation with industries and research centres.
Tutorial 3: GNSS Positioning: Theory and Practice

OBJECTIVES:
The course enters in detail in the study of the concepts and techniques used in the positioning by means of the Global Navigation Satellite Systems (GNSS). The theoretical foundations are presented and the processing algorithms are implemented through guided exercises that are performed in the laboratory. The analysis of the code and phase observables shows characteristic aspects of the GNSS (cycle-phase slips, ionospheric refraction, multipath, etc.). Satellite positions and their clocks offset are calculated from the navigation message. The different terms involved in modelling the pseudoranges (relativistic effects, atmospheric troposphere/ionosphere and instrumental delays, clock synchronism, etc.), arise and navigation equations are solved by least squares estimation and by Kalman filtering. The practical sessions are made with different programs designed specifically for the course to implement different processing modules.

TOPICS COVERED:

- **GNSS measurements and their combinations**
 - Basics of pseudorange and carrier-phase measurements
 - Cycle-slips detection and combination of observables

- **GNSS Reference Systems and frames**
 - Coordinate systems, frames and transformations
 - Fundamentals of Time References

- **Satellite orbits and clocks**
 - Computation and accuracy

- **Position estimation with pseudoranges**
 - Measurements modelling and error sources
 - Linear observation model and parameter estimation

- **Precise Point Positioning**
 - Precise Satellite Orbits and Clocks
 - Carrier phase ambiguities: Floating vs Fixing
 - Accelerating the Filter Convergence: Fast-PPP

- **Introduction to Differential GNSS techniques**
 - Spatial and temporal correlation of GNSS errors
 - Differential error mitigation and positioning

- **Practical Lectures**

INSTRUCTORS:

Dr. Adrià Rovira-Garcia received his Aerospace Engineering degree in 2010 and the Ph.D. in Aerospace Science and Technology in 2016 from the UPC, Spain. He is currently a post-doctoral researcher at UPC focused in enhanced algorithms for the Fast-Precise Point Positioning (F-PPP) technique. He co-authors 4 papers in peer-reviewed journals, 2 book chapters and 13 works in meeting proceedings, with 1 best presentation award from the US Institute of Navigation.

Dr. Jaume Sanz Subirana is teaching at the Technical University of Catalonia (UPC), Barcelona, Spain, since 1983, receiving accreditation for Full Professor in 2010. Together with Dr. J.M. Juan, he created the Research Group of Astronomy and Geomatics (gAGE/UPC) in 1987. Its current research interests are in the field of GNSS data processing algorithms, ionospheric sounding, SBAS and GBAS, and High Accuracy Navigation. This last topic is one of the main research areas of gAGE/UPC, developing new algorithms which lead to the Wide Area RTK (WARTK) and Fast-Precise Point Positioning (F-PPP) techniques. He has been Principal Investigator in several international R+D projects. He is co-authoring more than 70 papers in peer-reviewed journals and about 200 works in meeting proceedings. He is co-authoring 5 patents on GNSS and 4 books on GNSS.
Tutorial 4: Vulnerabilities of GNSS

OBJECTIVES:
This course provides an overview of GNSS vulnerabilities. The course starts by providing the fundamentals related to GNSS signal processing and GNSS position and time computation. It then provides a description of the origin, effect and mitigation means of a series of sources of vulnerabilities for a GNSS receiver.

TOPICS COVERED:
- Reminders on GNSS Principles
 - Reminders on Received GPS L1 C/A Signal Structure
 - Transmitted GPS L1 C/A Signal Structure
 - Impact of the Propagation Channel on the Received GPS L1 C/A Signal
 - Reminders on GPS L1 C/A Receiver Signal Processing in Presence of Thermal Noise
 - Correlation Operation
 - Acquisition of GPS L1 C/A
 - Carrier and Carrier Phase Tracking for GPS L1 C/A
 - PRN Code Delay Tracking
 - Data demodulation, Data synchronization, Pseudorange Generation
- Reminders on Position Computation
 - Least Squares and Weighted Least Squares Solutions
 - UERE and DOP
 - GPS Performance
- GNSS Vulnerabilities and Mitigation
 - Satellite Payload and Constellation Failure (Evil Waveform, Major Service Failure, Constellation Failure)
 - Multipath and NLOS
 - Interference
 - Voluntary interference (Jamming, Meaconing, Spoofing)
 - Low C/N0 and Cross-correlation issues
 - Atmospheric Disturbances (TEC Gradients, Ionosphere scintillation)
- Test Cases

INSTRUCTORS:
Prof. Fabio Dovis is associate professor at Politecnico di Torino, working at the Department of Electronics and Telecommunications, where he contributed to the creation of the Navigation, Signal Analysis and Simulation (NavSAS) group. His research interests are focused on Global Navigation Satellite Systems and on positioning techniques. His scientific work addresses the design of architectures for GNSS receivers and of advanced algorithms for interference detection and multipath mitigation, considering for both current and modernized GNSS signals. He has a relevant experience in international projects in GNSS as well as cooperation with industries and research centres.

Dr. Olivier Julien is the head of the Signal Processing and Navigation (SIGNAV) research group of the TELECOM lab of ENAC (École Nationale de l’Aviation Civile), in Toulouse, France. He received his PhD in 2005 from the department of Geomatics Engineering of the University of Calgary, Canada. His research activity focuses on positioning and navigation for a wide range of applications including civil aviation, pedestrian and vehicular applications. He has a significant experience regarding advanced GNSS receiver signal processing and receiver design with a special interest in the design and use of future GNSS signals. He has been involved in numerous projects with industry and national/international institutions.
OBJECTIVES:
To introduce the Integrity Monitoring techniques used in civil aviation to aviation specialists and those interested in the reliability of satellite navigation solutions.
To update the community on the latest advances in these areas and the latest domains of application for integrity and reliability methods.

TOPICS COVERED:
INTRODUCTION
• GPS principles
 - Concepts
 - Constraints
 - Measurement Models
DEFINITIONS OF RELIABILITY AND CONFIDENCE
• GPS precision and error budget (UERE)
• Civil Aviation Requirements as a Reference Case
• Other practical examples
GROUND-BASED AUGMENTATION SYSTEM (GBAS)
• GBAS typical architecture and implementation
• GBAS correction, integrity message
• Protection levels computation
SATELLITE-BASED AUGMENTATION SYSTEM (SBAS)
• SBAS typical architecture and implementation
• SBAS correction, integrity message
• Protection levels computation
AIRBORNE BASED AUGMENTATION SYSTEM (ABAS): CASE OF RAIM
• Least Square Residual Method
 - Least Squares Position Solution
 - Detection criterion
 - Protection levels computation
• Solution Separation Method
 - Detection criterion
 - Protection levels computation
• Algorithm specifications from high level requirements
 - Threat model
 - False alert
 - Missed detection
• Practical examples
FUTURE OF RAIM
• GPS/Galileo RAIM
• Advanced RAIM
INTEGRITY FOR NON-CIVIL AVIATION USERS
• RAIM for other applications

INSTRUCTORS:
Dr. Christophe Macabiau graduated as an electronics engineer in 1992 from the ENAC (Ecole Nationale de l’Aviation Civile) in Toulouse, France. Since 1994, he has been working on the application of satellite navigation techniques to civil aviation. He received his PhD in 1997 and has been in charge of the signal processing lab of ENAC since 2000, where he also started dealing with navigation techniques for urban navigation. He is currently the head of the TELECOM lab of ENAC, which includes research groups on signal processing, electromagnetics and data communication networks.

Dr Carl Milne is an Assistant Professor within the Telecom Lab at the Ecole Nationale Aviation Civile, Toulouse, France. He completed his Master’s degree in Mathematics from the University of Warwick in 2004 and obtained a PhD in Geomatics from Imperial College London in 2009. He completed the graduate trainee programme in 2005 at the European Space Agency in Darmstadt, Germany. He currently lectures on many aspects of navigation science and technology including radio navigation aids, signal processing, positioning algorithms and GNSS for aviation. His research work addresses the design of integrity monitoring algorithms and performance for civil aviation applications including the use of GNSS augmentation systems both for current GNSS signals and the projected multi-constellation multi-frequency environment of the future. He has participated in French and British national research programmes for civil aviation authorities as well as for European funded grants such as SESAR.